Q1.

	5	(a)		centripetal force = mv^2/r	B1 B1	
					(hence) $mv^2/r = Bqv$	B1	[3]
		(b)		$r_{\alpha}/r_{\beta} = (m_{\alpha}/m_{\beta}) \times (q_{\beta}/q_{\alpha})$ = $(4 \times 1.66 \times 10^{-27})/(9.11 \times 10^{-31} \times 2)$ = 3.64×10^{3}	C1	[3]
		(c))	(i)	r_{α} = (4 x 1.66 x 10 ²⁷ x 1.5 x 10 ⁶)/(1.2 x 10 ⁻³ x 2 x 1.6 x 10 ⁻¹⁹) = 25.9 m	A2	
				(ii)	$r_{\beta} = 25.9 \times 3.64 \times 10^{3} = 7.13 \times 10^{-3} \text{ m}$	A1	[3]
		(d)	(i)	deflected upwardsbut close to original direction		
				(ii)	opposite direction to α -particle and 'through side'	B1	[3]
Q2.							
6	6 ((a)	(i)		ield in core must be changing at an e.m.f./current is induced in the secondary	M1 A1	[2]
			(ii)	powe outpu	er = VI <u>at power is constant so if V_S increases</u> , I_S decreases	M1 A1	[2]
	((b)	(i)	same	e shape and phase as I _P graph	B1	[1]
			(ii)		e frequency ct phase w.r.t. Fig. 6.3	M1 A1	[2]
			(iii)) ½π <u>ra</u>	<u>ad</u> or 90°	B1	[1]
Q3.							
6	(a)	(i)	arrow	B in correct direction (down the page)	В1	
			(ii)	arrow	F in correct direction (towards Y)	В1	[2]
	(b)	(i)		two bodies interact, force on one body is equal but opposite in on to force on the other body.	В1	[1]
			(ii)	direction	on opposite to that in (a)(ii)	B1	[1]
	(mer forc	ntion of e betwe	reasonable values of <i>I</i> and <i>d</i> expression <i>F</i> = <i>BIL</i> een wires is small to weight of wire	B1 B1 M1 A1	[4]

Q4.

8	(a)	am	ow labelled E pointing down the page	B1	[1]
	(b)	(i)	Bqv = qE forces are independent of mass and charge 'cancels' so no deviation	M1 M1 A1	
		(ii)	magnetic force > electric force so deflects 'downwards'	M1 M1 A1	[3]
Q5.					
6	(a)	par	allel (to the field)	B1	[1]
	(b)	(i)	torque = $F \times d$ $2.1 \times 10^{-3} = F \times 2.8 \times 10^{-2}$ F = 0.075 N (use of 4.5 cm scores no marks)	C1 A1	[2]
		(ii)	zero	A1	[1]
	(c)	 (ii) magnetic force > so deflects 'downwards' (a) parallel (to the field) (b) (i) torque = F × d 2.1 × 10⁻³ = F × F = 0.075 N (use of 4.5 cm section) (ii) zero (c) F = BILN(sinθ) 0.075 = B × 0.170 × 6 B = 7.0 × 10⁻² T = 7 (d) (i) (induced) e.m.f. is (magnetic) flux (liit) change in flux link induced e.m.f = (0.000 + 0.000	$BILN(\sin\theta)$ $75 = B \times 0.170 \times 4.5 \times 10^{-2} \times 140$ $= 7.0 \times 10^{-2} \text{ T} = 70 \text{ mT}$	C1 M1 A0	[2]
	(d)	(i)	(induced) $\underline{e.m.f.}$ is proportional to / equal to $\underline{rate\ of\ change}$ of (magnetic) flux (linkage)	M1 A1	[2]
		(ii)	change in flux linkage = BAN = $0.070 \times 4.5 \times 10^{-2} \times 2.8 \times 10^{-2} \times 140$ = 0.0123 Wb turns induced e.m.f = $0.0123 / 0.14$ = 88 mV (Note: This is a simplified treatment. A full treatment would involve the	C1 C1 A1	[3]
			everaging of B cos Aleading to a 1/2 factor)		

Q6.

6	(a)	(un	of magnetic flux density / magnetic field strength form) field normal to wire carrying current of 1 A ng force (per unit length) of 1 N m ⁻¹	B1 M1 A1	[3]
	(b)	(i)	force on magnet / balance is downwards (so by Newton's third law) force on wire is upwards pole P is a north pole	B1 M1 A1	[3]
		(ii)	F = BIL and $F = mg$ (g missing, then 0/3 in (ii)) 2.3 × 10 ⁻³ × 9.8 = B × 2.6 × 4.4 × 10 ⁻² (g = 10, loses this mark) B = 0.20 T	C1 C1 A1	[3]
	(c)		ding for maximum current = $2.3 \times \sqrt{2}$ I variation = $2 \times 2.3 \times \sqrt{2}$ = 6.5 g	C1 A1	[2]
Q7.					
7 Q8.	obse (inde eithe or	n <u>kno</u> erve (uced) er	ries with meter (do not allow inclusion of a cell) wn pole into coil current direction (not reading) field / field from coil repels magnet states rule to determine direction of magnetic field in coil reversing magnet direction gives opposite deflection on meter of induced current such as to oppose the change producing it	B1 B1 B1 B1 B1	6]
ţ	5 (a	ı) (i)	$V_{\rm H}$ depends on angle between (plane of) probe and B -field either $V_{\rm H}$ max when plane and B -field are normal to each other or $V_{\rm H}$ zero when plane and B -field are parallel or $V_{\rm H}$ depends on sine of angle between plane and B -field	B1	[2]
		(ii)	1 calculates V _H r at least three times to 1 s.f. constant so valid or approx constant so valid or to 2 s.f., not constant so invalid	M1 A1	[2]
			2 straight line passes through origin	B1	[1]
	(t		e.m.f. induced is proportional / equal to rate of change of (magnetic) flux (linkage) constant field in coil / flux (linkage) of coil does not change e.g. vary current (in wire) / switch current on or off / use a.c. current	M1 A1 B1	[3]
		• •	rotate coil move coil towards / away from wire (1 mark each, max 3)	В3	[3]

Q9.

7	(a	arr	ow pointing up the page	B1	[1]
	(b) (i)	Eq = Bqv $v = (12 \times 10^3) / (930 \times 10^{-6})$ $= 1.3 \times 10^7 \text{ m s}^{-1}$	C1 A1	[3]
		(ii)	$Bqv = mv^2 / r$ $q/m = (1.3 \times 10^7) / (7.9 \times 10^{-2} \times 930 \times 10^{-6})$ = 1.8×10^{11} C kg ⁻¹	C1 C1 A1	[3]
Q10					
6	(a)	(i)	straight line with positive gradient through origin	M1 A1	[2]
		(ii)	maximum force shown at θ = 90° zero force shown at θ = 0° reasonable curve with F about ½ max at 30°	M1 M1 A1	[3]
	(b)	(i)	force on electron due to magnetic field force on electron normal to magnetic field and direction of electron	B1 B1	[2]
		(ii)	quote / mention of (Fleming's) left hand rule electron moves towards QR	M1 A1	[2]
Q11					
5	(a)		on (of space) where there is a force er on / produced by magnetic pole on / produced by current carrying conductor / moving charge	M1 A1	[2]
	(b)	(i)	force on particle is (always) normal to velocity / direction of travel speed of particle is constant	B1 B1	[2]
		(ii)	magnetic force provides the centripetal force $mv^2 / r = Bqv$ r = mv / Bq	B1 M1 A0	[2]
	(c)	(i)	direction from 'bottom to top' of diagram	B1	[1]
		(ii)	radius proportional to momentum ratio = 5.7 / 7.4 = 0.77	C1 A1	[2]
			(answer must be consistent with direction given in (c)(i))	01	[2]

Q12.

5	(a)	(i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage) / rate of flux cutting		M1 A1	[2]
		(ii)	 moving magnet causes change of flux linkage speed of magnet varies so varying rate of change of flux magnet changes direction of motion (so current changes direction) 		B1 B1 B1	[1] [1] [1]
	(b)		od = 0.75s juency = 1.33Hz		C1 A1	[2]
	(c)	gra	ph: smooth correctly shaped curve with peak at f_0 A never zero		M1 A1	[2]
	(d)	(i)	resonance		B1	[1]
		(ii)	e.g. quartz crystal for timing / production of ultrasound		A1	[1]
Q1:	3.					
ā	7 (a) s	ketch: concentric circles (minimum of 3 circles) separation increasing with distance from wire correct direction	M1 A1 B1		[3]
	(b) (i	arrow direction from wire B towards wire A	B1		[1]
		(ii) either reference to Newton's third law or force on each wire proportional to product of the two currents so forces are equal	M1 A1		[2]
	(V	orce <u>always</u> towards wire A/ <u>always</u> in same direction aries from zero (to a maximum value) ariation is sinusoidal / sin ² at) twice frequency of current (1)	B1		
			any two, one each)	B2		[3]

Q14.

5	(a)	cur	ng) straight conductor carrying current of 1A rent/wire normal to magnetic field reflux density 1T,) force per unit length is 1Nm ⁻¹	M1 M1 A1		[3]
	(b)	(i)	(originally) downward force on magnet (due to current) by Newton's third law (allow "N3") upward force on wire	B1 M1 A1		[3]
		(ii)	F = BIL 2.4 × 10 ⁻³ × 9.8 = B × 5.6 × 6.4 × 10 ⁻² B = 0.066 T (need 2 SF) (g missing scores 0/2, but g = 10 leading to 0.067T scores 1/2)	C1 A1		[2]
	(c)		w reading is 2.4√2 g her changes between +3.4g and −3.4g total change is 6.8 g	C1 A1		[2]
Q15.						
5	(a)		iform magnetic) flux normal to long (straight) wire carrying a current of 1 eates) force per unit length of 1 Nm ⁻¹	Α	M1 A1	[2]
	(b)	(i)	flux density = $4\pi \times 10^{-7} \times 1.5 \times 10^{3} \times 3.5$ = $6.6 \times 10^{-3} \text{ T}$		C1 A1	[2]
		(ii)	flux linkage = $6.6 \times 10^{-3} \times 28 \times 10^{-4} \times 160$ = 3.0×10^{-3} Wb		C1 A1	[2]
	(c)	(i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage)		M1 A1	[2]
		(ii)	e.m.f. = $(2 \times 3.0 \times 10^{-3}) / 0.80$ = 7.4×10^{-3} V		C1 A1	[2]

Q16.

5	(a)	 u) (uniform magnetic) flux normal to long (straight) wire carrying a current of 1 A (creates) force per unit length of 1 N m⁻¹ 			
	(b)	(i)	sketch: concentric circles increasing separation (must show more than 3 circles) correct direction (anticlockwise, looking down)	M1 A1 B1	[3]
		(ii)	B = $(4\pi \times 10^{-7} \times 6.3) / (2\pi \times 4.5 \times 10^{-2})$ = 2.8×10^{-5} T	C1 A1	[2]
			$F = BIL (\sin \theta)$ = 2.8 × 10 ⁻⁵ × 9.3 × 1 $F/L = 2.6 \times 10^{-4} \text{ N m}^{-1}$	C1 A1	[2]
	(c)	reac	e per unit length depends on product $I_{\rm X}I_{\rm Y}$ / by Newton's third law / action and tion are equal and opposite ame for both	M1 A1	[2]
Q17	7.				
6.	(a)		e.g. E-field, force independent of speed, B-field, force ∝ speed E-field, force along field direction, B-field, force normal etc I		[4]
	(b)	(i) (ii)	out of plane of paper (not 'upwards'). $mv^2/r = Bqv$ $r = (1.67 \times 10^{-27} \times 4.5 \times 10^6) / (0.12 \times 1.6 \times 10^{-19})$ $r = 0.39 \text{ m}$	C1 C1	[4]
	(c)	(i) (ii)	arrow pointing up page $Bqv = Eq$ C $E = 0.12 \times 4.5 \times 10^6$ C $E = 5.4 \times 10^5 \text{ V m}^{-1}$	C1	[3]
	(d)		gravitational force $<< F_{\rm B}$ or $F_{\rm E}$	B1	[1]
Q18	3.				
7	(a)	(i) (ii)	the wire cuts magnetic field	1 1	[4]
	(b)		$x_0 = 1.5 \text{ mV}$ (allow ±0.1) C $\omega = 2\pi / T = 2\pi / (3 \times 10^{-3})$ C $= 2090 \text{ rad s}^{-1}$ C $x = 1.5 \sin 2090t$ A	1 1	[4]

Q19.

5	(a)		field producing force of 1.0 N m $^{-1}$ on wire $OR\ B = F/IL\sin 2M1$ carrying current of 1.0 A normal to field OR symbols explained A1		[2]
	(b)	(i)	$\phi = BA$ = 1.8 x 10 ⁻⁴ x 0.60 x 0.85 C1 = 9.18 x 10 ⁻⁵ Wb A1		[2]
		(ii)1	$\Delta \phi$ = 9.18 x 10 ⁻⁵ Wb		
		(ii)2	$e = (N\Delta\phi)/\Delta t$ = $(9.18 \times 10^{-5})/0.20$		[3]
		(iii)	there is an e.m.f. and a complete circuit OR no resultant e.m.f. from other three sides OR no e.m.f. in AB so yes		[1]
Q20.					
4	(a)	(i)	50 mT	1	
		(ii)	flux linkage = BAN = $50 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150 = 3.0 \times 10^{-4} \text{ Wb}$	1	[3]
			(allow 49 mT \rightarrow 2.94 x 10 ⁻⁴ Wb or 51 mT \rightarrow 3.06 x 10 ⁻⁴ Wb)		
	(b)	propo	/induced voltage (do not allow current) rtional/equal to f change/cutting of flux (linkage)	1	[2]
	(c)		new flux linkage = $8.0 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150$ = 4.8×10^{-5} Wb change = 2.52×10^{-4} Wb	1	[2]
		(ii)	e.m.f. = $(2.52 \times 10^{-4})/0.30$ = 8.4×10^{-4} V	1	[2]
	(d)	either	for a small change in distance x (change in) flux linkage decreases as distance increases so speed must increase to keep rate of change constant	1 1 1	[3]
		or	(change in) flux linkage decreases as distance increases (at constant speed, e.m.f/flux linkage decreases as x increases (1) 1) 1)	[0]

Q21.

	5	(a)	into (plane of) paper/downwards		1	[1]
		(b)	(i)	the <u>centripetal force</u> = mv^2/r $mv^2Ir = Bqv \underline{hence} q/m = v/r B$ (some algebra essential)	1	[2]
			(ii)	$q/m = (8.2 \times 10^6)/(23 \times 10^{-2} \times 0.74)$ = 4.82×10^7 C kg ⁻¹		1	[2]
		(c)	(i)	mass = $(1.6 \times 10^{-19})/(4.82 \times 10^7 \times 1.66 \times 10^{-27})$ = 2u		1	[2]
			(ii)	proton + neutron		1	[1]
Q22.							
5	(a)	1/	$\frac{7}{2} \times 9.11$	qV(or some verbal explanation)	B1 B1 A0		[2]
	(b)(i)		vithin fie eyond fi	ld: circular arcin 'downward' directionield: straight, with no 'kink' on leaving field	B1 B1 B1		[3]
	(ii	2. (r	eflectior magneti	ler n is larger c) force is larger n is larger	M1 A1 M1 A1		[2] [2]
Q23.	•						
6	(a)		on straig	cally equal to) force per unit length ght conductor carrying unit current to the field	M1 A1 A1		[3]
	(b)			ugh coil = $BA \sin \theta$ age = $BAN \sin \theta$	B1 B1		[2]
	(c)(d) e.m.f. proportional to hange of flux (linkage)	M1 A1		[2]
	(ii) g	graph:	two square sections in correct positions, zero elsewhere pulses in opposite directions	B1 B1 B1		[3]
					1 - 1		1

Q24.

5	(a)	(i)	(induced) e.m.f proportional/equal to rate of change of flux (linkage) (allow 'induced voltage, induced p.d.)	B1	
			flux is cust as the disc moves hence inducing an e.m.f	M1 A0	[2]
		(ii)	field in disc is not uniform/rate of cutting not same/speed of disc not same (over whole disc) so different e.m.f.'s in different parts of disc lead to eddy currents	B1 M1 A0	[2]
	(b)	energ	currents dissipate thermal energy in disc gy derived from oscillation of disc gy of disc depends on amplitude of oscillations	B1 B1 B1	[3]
Q2	5.				
6	(a)	(i)	$BI\sin heta$	1 [1]	
		(ii)	(downwards) into (the plane of) the paperB	1 [1]	
	(b)	(i)	magnetic field (due to current) in one loop OR each loop acts as a coil	1 11	
		(ii)	B = $2 \times 10^{-7} I/0.75 \times 10^{-2}$ (= $2.67 \times 10^{-5} I$)	:1	
Q2	6.				
8	(a)	a fo	ion (of space) / area where orce is experienced by rent-carrying conductor / moving charge / permanent magnet A	1	[3]
	(b)	(i)	electric B	1	[1]
		(ii)	gravitational B	1	[1]
		(iii)	magnetic B	1	[1]
		(iv)	magnetic B	1	[1]

6	(a)	with	increasing se	eparation	east three lines)	11	[3]
	(b)	(i)	correct positi	on to left o	of wire	31	[1]
		(ii)	$B = (4\pi \times 10^{\circ})$ $= 1.8 \times 10^{\circ}$	0 ⁻⁷ × 1.7) / 0 ⁻⁵ T	$/(2\pi \times 1.9 \times 10^{-2})$	C1 A1	[2]
	(c)		ent = (2.8 /	$1.9) \times 1.7$			[2]
					רן	otal	: 8]
Q28	•						
5	(a)	(i)			nticlockwise(minimum 3 circles) creases with distance from wire		[2]
		(ii)	direction from	m Y towar	rds X	. A1	[1]
	(b)	(i)	flux density a	it length	= $(4\pi \times 10^{-7} \times 5.0) / (2\pi \times 2.5 \times 10^{-2})$ = $4.0 \times 10^{-5} \text{ T}$ = BI = $4.0 \times 10^{-5} \times 7.0$ = $2.8 \times 10^{-4} \text{ N}$.C1	[4]
		(ii)	or (isola	qual ated syste	s on product of the currents in the two wiresem so) Newton's 3 rd law applies	.A1 M1)	[2]
						[Tot	al: 9]

Q29.

6	(a) (i	e.m.f. induced proportional / equal to		
			rate of change of (magnetic) flux (linkage)	A1	[2]
		(ii) e.m.f. (induced) only when flux is changing / cut direct current gives constant flux		[2]
	(1	b) (i) (induced) e.m.f. / current acts in such a direction to produce effects		[2]
		(ii) (induced) current in <u>secondary</u> produces magnetic field opposes (changing) field produced in <u>primary</u> so not in phase	M1	[2]
	(c) (i) alternating means that voltage / current is easy to change	B1	[1]
		(ii) high voltage means less power / energy loss (during transmission)	B1	[1]
				[Total:	101
Q3() .				•
	5	(a)	field into (the plane of) the paper	B1	[1]
		(b)	force due to magnetic field <u>provides</u> the centripetal force $mv^2 / r = Bqv$ $B = (20 \times 1.66 \times 10^{-27} \times 1.40 \times 10^5) / (1.6 \times 10^{-19} \times 6.4 \times 10^{-2})$ $= 0.454 \text{ T}$	B1 C1 B1 A0	[3]
		(c)	(i) semicircle with diameter greater than 12.8cm	B1	[1]
		. 50.6			
			(ii) new flux density = $\frac{22}{20}$ × 0.454	C1	
			B = 0.499T	A1	[2]
Q3 ⁻	1.				
5	(a)	ma	gnetic flux = BA = $89 \times 10^{-3} \times 5.0 \times 10^{-2} \times 2.4 \times 10^{-2}$ = 1.07×10^{-4} Wb	C1 A1 [[2]
	(b)	(i)	e.m.f. = $\Delta \phi / \Delta t$ (for $\Delta \phi$ = 1.07 × 10 ⁻⁴ Wb), Δt = 2.4 × 10 ⁻² / 1.8 = 1.33 × 10 ⁻² s e.m.f. = (1.07 × 10 ⁻⁴) / (1.33 × 10 ⁻²) = 8.0 × 10 ⁻³ V	C1 C1	[3]
		(ii)	current = $8.0 \times 10^{-3} / 0.12$ $\approx 70 \text{ mA}$	M1	[1]
	(c)	= 8 ≈ 3	te on wire = BIL $9 \times 10^{-3} \times 70 \times 10^{-3} \times 5.0 \times 10^{-2}$ $\times 10^{-4}$ (N) able comment e.g. this force is too / very small (to be felt)	C1 M1 A1 [[3]

Q32.

ī	7	 (a) force due to E-field is equal and opposite to force due to B-field Eq = Bqv v = E/B 		B' B'	1	[3]	
		(b)	either or or so no	charge and mass are not involved in the equation in (a) $F_{\rm E}$ and $F_{\rm B}$ are both doubled E , B and v do not change deviation	M A	31	[2]
Q3:	3.						
	(b) (i) (induced) e.m.f. is proportional to rate of change/cutting of (magnetic) flux (linkage)					M1 A1	[2]
		(ii	as i	urrent is induced in the coil magnet moves in coil rent in resistor gives rise to a heating effect rmal energy is derived from energy of oscillation of the magnet		M1 A1 M1 A1	[4]
Q3	4.						
5	(8	a)	(i) Bq	$v(sin\theta)$ or $Bqv(cos\theta)$	B1	[1]
		(ii) qE		B1	[1]
	(I			t be opposite in direction to $F_{\rm E}$ netic field <u>into</u> plane of paper	B1 B1	[2	<u>?]</u>

Q35.

6	(a)	unit of magnetic flux density field normal to (straight) conductor carrying current of 1 A force per unit length is 1 Nm ⁻¹			[3]
	(b)	(i)	force on particle always normal to direction of motion (and speed of particle is constant)	M1	
			magnetic force provides the centripetal force	A1	[2]
		(ii)	$mv^2/r = Bqv$ $r = mv/Bq$	M1 A0	[1]
	(c)	(i)	the momentum/speed is becoming less so the radius is becoming smaller	M1 A1	[2]
		(ii)	spirals are in opposite directions so oppositely charged	M1 A1	[2]
			equal <u>initial</u> radii so equal (initial) speeds	M1 A1	[2]
Q36	•				
6	(a)	(i)	particle must be moving with component of velocity normal to magnetic field	M1 A1	[2]
		(ii)	$F = Bqv \sin \theta$ $q, v \text{ and } \theta \text{ explained}$	M1 A1	[2]
	(b)	(i)	face BCGF shaded	A1	[1]
		(ii)	between face BCGF and face ADHE	A1	[1]
	(c)	eith	ential difference gives rise to an <u>electric</u> field er $F_E = qE$ (no need to explain symbols) lectric field gives rise to force (on an electron)	M1 A1	[2]
Q37					
7	(a)		uced e.m.f./current produces effects/acts in such a direction/tends oppose the change causing it	M1 A1	[2]
	(b)	(i)	1. to reduce flux losses/increase flux linkage/easily magnetised $\underline{\text{and}}$ demagnetised	B1	[1]
			2. to reduce energy / heat losses (do not allow 'to prevent energy losses') caused by eddy currents (allow 1 mark for 'reduce eddy currents')	M1 A1	[2]
		(ii)	alternating current/voltage gives rise to (changing) flux in core flux links the <u>secondary coil</u> (by Faraday's law) changing flux induces e.m.f. (in secondary coil)	B1 B1 M1 A1	[4]

Q38.

4	(a)		ce on proton is normal to velocity and field ovides centripetal force (for circular motion)		M1 A1	
	(b)	magnetic force = Bqv centripetal force = $mr\omega^2$ or mv^2/r $v = r\omega$			B1 B1 B1	
			$pv = Bqr\omega = mr\omega^2$ = Bq/m		A1	[4]
Q39	•					
5	(a)	θ	ther ϕ = $BA \sin \theta$ there A is the area (through which flux passes) is the angle between B and (plane of) A		M1 A1	
			∍ BA ere A is area normal to B		(M1) (A1)	[2]
	(b)		aph: $V_{\rm H}$ constant and non zero between the poles and zero outside arp increase/decrease at ends of magnet		M1 A1	[2]
	(c)	(i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage)		M A	
		(ii)	short pulse on entering and on leaving region between poles pulses approximately the same shape but opposite polarities e.m.f. zero between poles and outside		M [*] A [*]	1
Q40	•					
5	(a)	(i)	field shown as right to left	B1	[1]
		(ii)	lines are more spaced out at ends	B1	[1]
	(b)	eith	Il voltage depends on angle ner between field and plane of probe maximum when field normal to plane of probe	M1		
		orz	zero when field parallel to plane of probe	A1	[2]
	(c)	(i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage) (allow rate of cutting of flux)	M1 A1	[2]
		(ii)	e.g. move coil towards/away from solenoid rotate coil vary current in solenoid			
			insert iron core into solenoid (any three sensible suggestions, 1 each)	В3	[3]

Q41.

6	6 (a) force due to magnetic field is constant			
	force is (always) normal to direction of motion this force provides the centripetal force			[3]
		$nv^2 / r = Bqv$ ence $q / m = v / Br$	M1 A0	[1]
	(c) (i	$q / m = (2.0 \times 10^{7}) / (2.5 \times 10^{-3} \times 4.5 \times 10^{-2})$ = 1.8 × 10 ¹¹ C kg ⁻¹	C1 A1	[2]
	(ii) sketch: curved path, constant radius, in direction towards bottom of page tangent to curved path on entering and on leaving the field	M1 A1	[2]
Q42	•			
5	(a) (i)	region (of space)		
		either where a moving charge (may) experience a force or around a magnet where another magnet experiences a force	B1	[1]
	(ii)	$(\Phi =) BA \sin \theta$	A1	[1]
	(b) (i)	plane of frame is always parallel to $B_{\rm V}/{\rm flux}$ linkage always zero	B1	[1]
	(ii)	$\Delta \Phi = 1.8 \times 10^{-5} \times 52 \times 10^{-2} \times 95 \times 10^{-2}$ = 8.9 × 10 ⁻⁶ Wb	C1 A1	[2]
	(c) (i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage) (allow rate of cutting of flux)	M1 A1	[2]
	(ii)	e.m.f. = $(8.9 \times 10^{-6}) / 0.30$ = 3.0×10^{-5} V	A1	[1]
	(iii)	This question part was removed from the assessment. All candidates were awarded 1 mark.	B1	[1]

Q43.

6	(a)	or	ner constant speed parallel to plate accelerated motion/force normal to plate/in direction field not circular	B1 A0	[1]
	(b)	(i)	direction of force due to magnetic field opposite to that due to electric field magnetic field into plane of page	B1 B1	[2]
		(ii)	force due to magnetic field = force due to electric field	B1	
			Bqv = qE B = E/V $= (2.8 \times 10^{4})/(4.7 \times 10^{5})$	C1	
			= $(2.8 \times 10^4) / (4.7 \times 10^5)$ = 6.0×10^{-2} T	A1	[3]
	(c)	(i)	no change/not deviated	B1	[1]
		(ii)	deviated upwards	В1	[1]
		(iii)	no change/not deviated	B1	[1]
Q44					
7	(a)	gra	ph: V _H increases from zero when current switched on	B1	
			$V_{\rm H}$ then non-zero constant $V_{\rm H}$ returns to zero when current switched off	B1 B1	[3]
	(b)	(i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage)	M1 A1	[2]
		(ii)	pulse as current is being switched on zero e.m.f. when current in coil	B1 B1	
			pulse in opposite direction when switching off	B1	[3]
Q45					
5	(a		nly curve with decreasing gradient compared to the compared compared to the c	M1 A1	[2]
			graph line less than 4.0 cm do not allow A1 mark) o credit if graph line has positive and negative values of V _H)		
	(k		raph: from 0 to 27, two cycles of a sinusoidal wave	M1	
			I peaks above 3.5 mV eaks at 4.95 / 5.0 mV (<i>allow 4.8 mV to 5.2 mV</i>)	C1 A1	[3]
	(0	;) e.	m.f. induced in coil when magnetic field/flux is changing/cutting	B1	
			ther at each position, magnetic field does not vary one e.m.f. is induced in the coil/no reading on the millivoltmeter at each position, switch off current and take millivoltmeter reading		
		or		B1	[2]

B1

either charged particle enters region normal to both fields or correct
$$B$$
 direction w.r.t. E for zero deflection for no deflection, $v = E/B$

B1 B1 [3]

(no credit if magnetic field region clearly not overlapping with electric field region)

© Cambridge International Examinations 2014

www.maxpapers.com

Page 4		Mark Scheme Syllabus		
		GCE A LEVEL – May/June 2014 9702	42	
(b) (i)	=	Bqr/v $(640 \times 10^{-3} \times 1.6 \times 10^{-19} \times 6.2 \times 10^{-2})/(9.6 \times 10^{4})$ 6.61×10^{-26} kg $(6.61 \times 10^{-26})/(1.66 \times 10^{-27})$ u 40 u	C1 C1 C1	[4]
(ii)	q/m	∞ 1/r or m constant and $q \infty$ 1/r for A is twice that for B in path A have (same mass but) twice the charge (of ions in path B)	B1 B1 B1	[3]

Q47.

6 (a)
$$F = BIL \sin \theta$$
 C1
= $2.6 \times 10^{-3} \times 5.4 \times 4.7 \times 10^{-2} \times \sin 34^{\circ}$
= 3.69×10^{-4} N A1 [2]
(allow 1 mark for use of cos 34°)

(b) peak current =
$$1.7 \times \sqrt{2}$$

= 2.4 A

max. force =
$$2.6 \times 10^{-3} \times 2.4 \times 4.7 \times 10^{-2} \times \sin 34^{\circ}$$

= $1.64 \times 10^{-4} \, N$

variation =
$$2 \times 1.64 \times 10^{-4}$$

= 3.3×10^{-4} N A1 [3]